If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+49x-195=0
a = 2; b = 49; c = -195;
Δ = b2-4ac
Δ = 492-4·2·(-195)
Δ = 3961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-\sqrt{3961}}{2*2}=\frac{-49-\sqrt{3961}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+\sqrt{3961}}{2*2}=\frac{-49+\sqrt{3961}}{4} $
| X+1/a+1=2 | | 108=6p | | -9x-4=-14 | | k+3/5=2 | | -8=-4(-6x-3 | | 4/2=r+2/16 | | Y=5.6x+4.7 | | 15/12=8/x-4 | | X=4-k÷6 | | 1/3(t+6)-10=-3t+2S | | x*15=18*9 | | /3(t+6)-10=-3t+2 | | 2x−11=392x−11=39 | | /3(t+6)-10=-3t+2S | | 3+3/4s=12 | | 18*x=24*15 | | 0.3x-150=0 | | 8(5-x)=2(7-x) | | y/12=28=172 | | 10-6g=-5g | | p/3+17=22 | | Y=-0.6x+38 | | 7x+33=31 | | 3p+17=22 | | 122x-4=x+15 | | 4(2x−1)+2x+2= 2828 | | -41w=-492 | | −3(x−6)/(x+2)^3=0 | | 10x=9x-3+3 | | 20*x=13*60 | | −3(x−6)(x+2)3=0 | | 4*7=5*x |